

Optimization and performance standards of digital mammography systems

Professor David Dance

NCCPM, Royal Surrey County Hospital, Guildford, United kingdom

CURRENT RESEARCH

The OPTIMAM2 project: funded by Cancer Research-UK

- Optimising the use of X-rays to detect breast cancers
- Investigating the performance of imaging systems using real and simulated images of breast cancers

Main Colleagues in OPTIMAM

NCCPM, Guildford	CVSSP, University of Surrey	University of Leuven	Addenbrooke 's hospital, Cambridge	St George's Hospital	Jarvis Centre, Guildford
Ken Young	Kevin Wells	Hilde Bosmans	Mathew Wallis	Ros Given- Wilson	Julie Cooke
Alistair Mackenzie	Prem Elangovan	Emmy Shaheen	Paula Wilsher	Charul Patel	
Lucy Warren	Oliver Diaz	Nick Marshall			
Padraig Looney	Alaleh Rashidnasab	Lesley Cockmartin			
Mark Halling- Brown					
+ Students					

Standards and Guidelines

NHS Breast Screening Programme

Cancer Screening Programmes

Commissioning and Routine Testing of Full Field Digital Mammography Systems

European guidelines for quality assurance in breast cancer screening and diagnosis

Fourth edition - Supplements

∠NCCPM

NHSBSP EQUIPMENT REPORT 0604

JUNE 2006

Outline

- Background
- Breast dosimetry and breast dose
- Choice of X-ray spectra
- Image quality assessment
 - Physical image quality measures
 - Quality measures using phantoms
 - Clinical measures of image quality
 - Do phantom measurements and clinical measures correlate?
- Conclusions

Mammography 1913

Albert Saloman (Berlin) published first radiographs of surgical breast specimens

Mammography 1980 and 2015

Digital receptor Appropriate X-ray spectrum Grid

Image processing to optimise skin edge and improve contrast and display of detail

Mammography requirements 1

- Visualise:
 - small calcifications down to about 100 micron
 - limited by contrast, noise, system resolution & image processing
 - soft tissue masses as small as 5mm or less
 - limited mainly by contrast, anatomical clutter (overlying tissue) and image processing

Mammography requirements 2

- Control the dose. It must be:
 - high enough so that calcs are visible against noise
 - no higher than necessary to control risk
 - BUT if it is too low, cancer detection will decrease

Risk Benefit Analysis

NHSBSP Report 54

REVIEW OF RADIATION RISK IN BREAST SCREENING

Report by a joint working party of the NHSBSP National Coordinating Group for Physics Quality Assurance and the National Radiological Protection Board

Breast cancer screening Age 50 to 70 in the UK

Breast cancer screening Age 50 to 70 in the UK

Conclusion

When the benefit of imaging is much greater than the radiation risk

we should concentrate on achieving sufficient image quality rather than on reducing dose

Linear attenuation coefficients

Mammographic contrast

Variation of SNR with photon energy (fixed energy deposited in receptor)

Transmission through 5 cm breast

OPTIMISATION

- A balance between dose and image quality
- Dose is influenced by
 - X-ray spectrum
 - Noise level acceptable
 - Efficiency of image receptor (DQE)
- Image quality is influenced by
 - X-ray spectrum (contrast) and dose (quantum noise)
 - Structure noise and electronic noise
 - Receptor unsharpness (MTF)
 - Focal spot size (geometric unsharpness)
 - Scatter
 - Image processing
 - Image display and viewing conditions

Outline

- Background
- Breast dosimetry and breast dose
- Choice of X-ray spectra
- Image quality assessment
 - Physical image quality measures
 - Quality measures using phantoms
 - Clinical measures of image quality
 - Do phantom measurements and clinical measures correlate?
- Conclusions

UK DOSE SURVEY 1981

- 5CM PHANTOM
- Entrance surface dose
- Dose range 0.9 to 45 mGy (!)

- kV range 24- 49 kV
- HVL range 0.2 mm Al to 1.7 mm Al

Breast dose measures

- Incident air kerma is a poor measure of breast dose
- Average glandular dose
 Karlsson in 1976
 - Recommended by ICRP in 1987

Average glandular dose

- Cannot measure **AGD** on patients
- Incident air kerma K (without backscatter) can be easily measured or estimated
- Need conversion coefficients which relate **K** to AGD. In UK and Europe we use:

- *g*,*c* and *s* estimated using Monte Carlo modelling and simple breast model
 - tabulated against thickness and HVL
- Monte Carlo also used to design breast equivalent PMMA phantoms

D R Dance et al, PMB, 2000

SIMPLE GEOMETRICAL BREAST MODEL

Fine for quality control of AGD using breast equivalent phantoms or series of patient data

Does not give the true dose for individual patients

Simple breast model

Hammerstein 1979

- 5 mm adipose shield region
- Central region with mixture of glandular and adipose tissues
- Fraction by weight of glandular tissue in central region is known as the glandularity

Hammerstein et al suggested the use of 50% glandularity for dosimetry

g-factors

Breast thickness cm

D R Dance, PMB, 1990

Breast glandularity (UK)

D R Dance et al, PMB, 2000

PMMA equivalence age 50-64

D R Dance et al, PMB, 2000

EUREF dose standards for digital mammography

- Use PMMA phantoms 20-70 mm thick
- Clinically selected AEC and spectra
- Based on previous standards for screen-film and survey data from Holland, UK and Germany
- The acceptable level is the minimum acceptable standard
- However, it is recommended that systems operate as far as possible at a standard equal to or better than the achievable level
- REMEMBER that if the dose is too low, cancer detection will decrease
 - different receptors have different unsharpness and noise properties and will require different doses

Acceptable and achievable AGD levels

AGD: 53 mm breast (45 mm PMMA)

Patient dose

• What dose level is currently used?

Reference: Oduko J et al "A survey of patient doses from digital mammography systems in the UK in 2007 to 2009" in Proceedings of the 10th International Workshop on Digital Mammography 2010

DR systems, 50-60mm, OB views

J Oduko, IWDM 2010

CR systems, 50-60mm, OB views

*~*NCCPM∿

J Oduko, IWDM 2010

Patient dose

- What dose level is currently used? Answer: 0.8 – 2.8 mGy AGD for 50-60mm breasts
- Doses for CR are generally higher than for DR
- Different systems have differ noise and unsharpness and require different dose levels
- What dose level should be used?

We can measure how changing the dose changes the results of physical or test phantom measurements BUT how does it affect cancer detection?

Outline

- Background
- Breast dosimetry and breast dose
- Choice of X-ray spectra
- Image quality assessment
 - Physical image quality measures
 - -Quality measures using phantoms
 - Clinical measures of image quality
 - Do phantom measurements and clinical measures correlate?
- Conclusions

Optimal energies for mammography

Optimal energy (simple model)

Varies between approximately 16 - 23 keV

Increases with breast thickness

How can we adjust the spectrum?

- Mo target:
 - K X-rays 17.4 and 19.6 keV
- Rh target:
 K X-rays 20.2 and 22.7 keV
- W target:
 - K X-rays 59.3 and 67.2 keV

Rh/Rh spectra

K-edges

Photon energy (keV)

8 cm breast 10% glandularity

Spectra for digital mammography

- Optimum spectrum varies with breast thickness and glandularity
- Mo/Mo is optimum only for 2 cm breasts
- Dose saving possible cf Mo/Mo when CNR (not contrast) is main constraint

Spectra for digital receptors:

For the same generating kV:

Anode/Filter	Beam Energy	Breast size
Mo/Mo	Lowest	Smallest
Mo/Rh		
Rh/Rh		
W/Rh		
W/Ag	Highest	Largest

Outline

- Background
- Breast dosimetry and breast dose
- Choice of X-ray spectra
- Image quality assessment
 - Physical image quality measures
 - Quality measures using phantoms
 - Clinical measures of image quality
 - Do phantom measurements and clinical measures correlate?
- Conclusions

Modulation transfer functions

MTF for DR is better than for CR

Noise in digital images

Arises from:

Quantum mottle

 fluctuations in no of X-ray photons detected and no of light photons/charge carriers produced per X-ray photon

Structure mottle

- generally small
- **Electronic sources**

Relative noise power spectra contributions

Quantum is generally largest overall contribution

Low frequency quantum is largest for CR

Quantum for amorphous Se decreases less with frequency

DQE comparison

DQE for DR better than for CR especially at higher frequency

How does the difference between MTF and DQE for CR and DR impact on:

Image quality assessed using test phantoms

Outline

- Background
- Breast dosimetry and breast dose
- Choice of X-ray spectra
- Image quality assessment

 Physical image quality measures
 - Quality measures using phantoms
 - Clinical measures of image quality
 - Do phantom measurements and clinical measures correlate?
- Conclusions

Contrast detail test phantom

CDMAM phantom imaged with 50 mm PMMA Can be read using CDCOM software Uses unprocessed images (ideally)

Example: 160 µm detail

Good System

Poor System

How were detectability standards set?

- Minimum gold thickness detectable at diameters 0.1 to 2 mm
- Acceptable set so that 97.5% of systems used in UK breast screening would comply

- NOT VERY DEMANDING

 Achievable values set as averages of data from established digital systems recognised to have 'good quality'

Dose and noise

80 mAs

320 mAs

160 mAs

40 mAs

Dose required to reach minimum image quality standard (60mm thick breast)

SYSTEM	mGy (0.1 mm)	mGy (0.25 mm)
DR 1	0.60	0.67
DR 2	0.63	0.52
DR 3	0.85	0.80
DR 4	1.01	0.87
Average film-screen	1.17	1.07
CR 1	1.67	1.45
CR 2	3.46	1.49

How well are systems in NHSBSP optimised?

Plot dose v image quality from data for 318 systems

Hologic systems in NHSBSP

Siemens systems in NHSBSP

GE systems in NHSBSP

Fuji systems in NHSBSP

Proportion exceeding achievable IQ

~NCCPM

Drawbacks of contrast detail measures

- Standards set using unprocessed images
- Phantoms have no anatomical background
- Details may not be clinically realistic

Outline

- Background
- Breast dosimetry and breast dose
- Choice of X-ray spectra
- Image quality assessment
 - Physical image quality measures
 - -Quality measures using phantoms
 - Clinical measures of image quality
 - Do phantom measurements and clinical measures correlate?
- Conclusions

Clinical measures of image quality 1

Results from breast screening with different equipment

Differences in cancer detection using CR compared with DR in screening programs

Study	DCIS	Invasive cancer	Combined lesions	CR/DR dose
Belgium 2013	-27%	+2%	-3.5%	1.6
Canada 2013	-50%	-18%	-29%	1.17
France 2014	-53%	-15%	-23%	NA

A Mackenzie, PhD thesis Surrey University 2014

Clinical measures of image quality 2

- Difficult to make direct comparison of systems for breast screening by imaging the same breast with each system
 - additional dose
 - low incidence of cancer
 - breast positioning may differ for each system
- Use virtual clinical trials
 - real (or simulated) images
 - each image modified mathematically to simulate different systems
 - can use real lesions or inserted simulated lesions
- Results of 3 virtual clinical trials from OPTIMAM

Our Experimental Approach

Modifying image appearance 1

Adjust image unsharpness using MTF measurements

A Mackenzie et al. Medical Physics 2012

Modifying image appearance 2

Electronic noise

5

Hologic

GE

10

Carestream

15

NCCPM

Power spectra magnitude/hGV Measure and understand noise power behaviour with dose and spatial frequency

0<u>`</u>0

A Mackenzie et al. Medical Physics 2012

Adapt images by adding noise

- Calculate extra noise
 - For dose change
 - For differences between detectors
- Create noise images to add to real image
 - On pixel-by-pixel basis to account for different signal levels

A Mackenzie et al. Medical Physics 2012

Image quality modification (DR to CR)

A Mackenzie et al. Medical Physics 2012

NCCPM

OBSERVER STUDY 1

Calcification detection at different image qualities

Observer study on calcification detection

- 81 normal cases
- 81 abnormal cases with 113 simulated subtle clusters
- 6 image quality levels
- 7 observers
- 6804 image readings

L Warren et al, Medical Physics 2012

Simulated calcifications

Each DR image used to create additional images at 6 different IQ levels

L Warren et al, Medical Physics 2012

*∼***NCCPM**

L Warren et al, Medical Physics 2012

L Warren et al, Medical Physics 2012

NCCPM

AFROC Curves for IQ levels (fitted to average of 7 observers)

✓NCCPM

L Warren et al, Medical Physics 2012

Lesion sensitivity at 0.1 FP per image

∠NCCPM⊾

L Warren et al, Medical Physics 2012

Does CDMAM test object predict calcification detection?

NCCPM

L Warren et al, Medical Physics 2012

Does CDMAM test object predict calcification detection?

L Warren et al, Medical Physics 2012

Conclusions from Observer Study 1

- 1. Threshold gold thickness using the CDMAM phantom is a good predictor of detection of clinical calcification
- 2. EU guidelines for IQ are clinically relevant
- Traditional CR systems poorer than DR for calcification detection even at the relatively high dose level used (2.1 mGy, 50-60 mm breast).

ZNCCPN

- Good IQ is important for calcification detection and systems should exceed achievable levels in EU guidelines. Acceptable level is too low
- 5. Image processing investigated had little effect on calcification detection

L Warren et al, Medical Physics 2012

OBSERVER STUDY 2

Effect of image processing on detection of calcification and non-calcification lesions

Observer study on image processing Hologic software

Standard version

Low contrast version

Simulated screen-film

Observer study on image processing

80 normal cases

- 80 cases with simulated subtle clusters
 - avoids selection bias
- 80 cases with malignant non-calcification lesions (subtle or very subtle)
- **30** cases of biopsy proven benign lesions
- 3 types of image processing
- 7 observers

Image processing	Figure of merit			
	Masses	Calcifications		
Standard	0.73	0.65		
Low contrast	0.72	0.63 (p = 0.04)		
Simulated screen-film	0.72	0.61 (p = 0.0005)		

Conclusions from Observer Study 2

- For the detection of calcification clusters the standard image processing was significantly better than the low contrast or simulated screen-film processing
- 2. For the detection of non-calcification lesions there was no significant difference was found between any of the three image processing pairs
- 3. There were no significant differences in the number of false positive non-calcification marks for any of the image-processing pairs
- 4. The number of false positive calcification marks increased by 15% for film-screen processing compared to standard processing

OBSERVER STUDY 3

Effect of detector type on detection of calcification and non-calcification lesions

Image set for study

270 unprocessed image pairs – both breasts, one view (either CC or MLO)

80 with no cancer present

80 containing malignant subtle non-calcified cancers

80 with inserted malignant subtle calcification clusters

30 containing biopsy proven benign lesions

′NCCPM

Image conversion

• Starting image set was converted to:

- Arm 1: 'a-Se' detector
- Arm 2: 'Csl' detector
- Arm 3: 'NIP CR' detector
- Arm 4: 'Powder phosphor CR' detector

All doses reduced by 20%

AGD = 1.08 mGy for 50 to 60 mm breast thickness

Image processing

- Agfa Musica²
- Suitable for a wide range of image qualities

ZNCCP

Would you recall on the basis of this lesion?

∠NCCPN

No: Very confident No: Moderately confident No: Slightly confident Yes: Slightly confident Yes: Moderately confident Yes: Very confident

∠NCCPM

Compare	Change			
with <mark>a-Se</mark>	in recall			
Csl	n.s.			
NIP	-28%			
CR	-44%			

IQ pairs	<i>p</i> -value	5					
a-Se v. Csl	0.93	-8.0 acti					
a-Se v. NIP	0.002	onfi			Csl		a-Se
a-Se v. CR	0.0007	- 0.0				NIP	
Csl v. NIP	0.002	0.4	J. J		GR		
CsI v. CR	0.0009						
NIP v. CR	0.77						
		0.0	0.2	0.4	0.6	0.8	1.0

Non-localisation fraction

∠NCCPM

Relationship between physical image quality & cancer detection?

Calcification clusters

Non-calcification lesions

Relationship is not so clear

Larger detail More complex task

Conclusions: 3 OPTIMAM observer studies

- Threshold gold thickness using the CDMAM phantom is a good predictor of detection of clinical calcification
- Traditional CR systems poorer than DR for calcification detection even at relatively high dose levels. NIP may be acceptable at high dose levels
- 3. EU guidelines for IQ are clinically relevant
- 4. Good IQ is important for calcification detection and to a lesser extent for masses.

Conclusions: 3 OPTIMAM observer studies

- 1. Systems should exceed achievable levels in EU guidelines.
- 2. Acceptable level is too low. Guidelines may need revision
- 3. Image processing has an effect on calcification detection

Thank you for your attention