Annual Meeting of Cyprus Medical Physicists Association

Saturday, February 7th, 2015 The Classic Hotel 94 Rigenis Str, 1513 Nicosia - Cyprus

Patient Dosimetry (in diagnostic radiology)

AE

Costas J. Hourdakis Medical Physicist, M.Sc., Ph.D. Greek Atomic Energy Commission, EEAE

Saturday 7 February 2015, Nicosia, Cyprus

✓ Protection of patient

Balancing between necessary dose and quality of image

Optimization process

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Protection of patient

✓ Risk assessment

20% accuracy for stochastic effects (partial irradiation, low doses, highly uncertain risk)

Deterministic effects : 7% accuracy

Paediatric examinations : 7% accuracy

Doses to embryo/foetus : 7% accuracy

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

- Protection of patient
- Risk assessment

✓ Comparisons - Diagnostic Reference Levels (DRL) – Collective dose (dose to population, dose per caput)

Comparative dose measurements : 7% accuracy

- Protection of patient
- Risk assessment
- ✓ Diagnostic (Guidance) Reference Levels DRL
- ✓ Quality Assurance and equipment testing

provide confidence for optimum quality and minimum doses

- Baseline values
- QC & comparison with baselines

7% accuracy

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

- Protection of patient
- Risk assessment
- ✓ Diagnostic (Guidance) Reference Levels DRL
- ✓Quality Assurance and equipment testing
- ✓ Radiation surveys
 - exposure levels & potential risks
 - Accuracy 20% is sufficient

... many

Patient dosimetry for x rays used in medical imaging

• ICRU Report 74, published in 2005

Dosimetry in diagnostic radiology an international code of practice

 IAEA Technical Reports Series No 457, 2007

Dosimetry in Diagnostic Radiology: An International Code of Practice

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Contents

✓ Clinical dosimetry - Dose measurements

- Instrumentation
- Dosimetry protocols
 - o Radiography
 - Fluoroscopy & Interventional
 - o Mammography
 - 0 **CT**
- ✓ Patient dosimetry
- ✓ Diagnostic Reference Levels (DRL)
 - Local Regional National

✓ Collective Dose - Effective dose

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

- On patient directly, using TLDs placed on skin or using KAP (DAP) meters
- Using phantoms, to simulate patient and define exposure conditions / settings (mAs, kV, etc)
- In air, using appropriate exposure settings (collected from patient examination)

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015 cos

✓ Incident air kerma K_i (mGy)

- measured in air at a point that corresponds to patient skin (without patient presence).
 - Using phantoms to "trigger" mAs or
 - using known or reference mAs.
- calculated from measured tube output (mGy/mAs)

✓ Incident air kerma K_i

✓ Entrance surface air kerma, K_e (mGy)

- measured on patients using TLDs
- calculated from K_i and using appropriate backscatter factors, B

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

- ✓ Incident air kerma K_i
- ✓ Entrance surface air kerma K_e
- ✓ Air kerma-area product P_{KA}

✓ Air kerma-length product P_{KL} (mGy cm)

CT dosimetry

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

✓ Dose measurements (clinical measurements)

Instrumentation

• Dosimetry protocols - Procedures

✓ Patient dosimetry

✓ Diagnostic Reference Levels (DRL)

• Local - Regional – National

✓ Collective Dose - Effective dose

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Depending on the application there are various instrument categories and modes of operation

- Conventional diagnostic radiology (50-150 kV)
- Mammography
- CT (air kerma length product)
- KAP meters air kerma area product (Angiography, fluoroscopy)

- Radiographic mode (accumulated integrating "dose")
- Fluoroscopic mode ("dose" rate)
- Cine mode (pulsed "dose")

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Many types of dosimeters are commercially available

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Instrumentation - Dosimeters

Ionization chamber

costas....uuuuuseeccac.gi

Dosimeters for Clinical Dosimetry

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Instrumentation -Dosimeters

Air kerma determination :

$$K = M_Q N_{K,Q_O} \prod_i k_i$$

Usually (but not necessarily correctly) :

$$\prod_{i} k_{i} = k_{P,T} \cdot k_{Q} \cdot k_{S} k_{dist} k_{lin} k_{dir} k_{emc} k_{fh} k_{lt} k_{ms} = k_{P,T} \cdot k_{Q}$$

1

Tips (Sources of uncertainties) :

- Energy corrections for the beam quality (i.e. HVL not to the applied kVp)
- Air density corrections should be considered. Typical $k_{P,T} = 1.03$ ($\theta = 22^{\circ}$ C and P=99 kPa), resulting in a 3 % deviation, if not applied. For solid state $k_{P,T} = 1$
- Careful use of dosimeters that apply automatic corrections for temperature and/or pressure, especially for :
 - position of device (having the sensors) inside room
 - accuracy of sensors
 - temperature reference value (to 20°C or 22 °C)

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Energy dependence of response

Standard beam qualities during calibration : RQR series – RQR5 (70 kV reference)

Example : Clinical X-ray tube with HVL = 5.8 mm Al

Calibration coefficient, $N_{K} = ?$

- i. either at 5 mmAl (RQR9)
- ii. or interpolation

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Energy dependence of response

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Instrumentation -Dosimeters

Solid state

Advantages

- produce large signals from modest amounts of radiation
 - rigid and robust
 - do not require pressure correction
 - convenience to use

Modern models Compensation

- use of multi element ST
- use of movable filters
- compensation and processing of signals

10'

CAUTIONS

- energy dependant
- may be inappropriate for HVL measurements, due to energy depend.
- directional, positioning & angular dependency
- ageing effects (regular calibration)
- lead (Pb) plate at the rear surface (not measuring backscatter) costas.hourdakis@eeae.gr

Annual Meeting of CIMPA, Nicosia, Cyprus 7-2-2015

IEC 61767 : 1997 dosimeter performance characteristics								
Influence quantity	Influence quantity Minimum rated ranges							
Intrinsic error, air kerma Intrinsic error, air kerma rate	$> 100 \ \mu Gy$ $> 100 \ \mu Gy/s$	reference	$ \pm 5\%$ $\pm 5\%$					
Radiation quality of unattenuated beam (GR)	50 – 150 kV W anode, 2,5mmAl filtration	RQR5	± 5%					
Radiation quality (Mammo GR)	22 – 40 kV Mo anode, Mo filtration	RQR-M2	± 5%					
Air kerma rate	as stated by the manufacturer	as at calibration	$\pm 2\%$ a					
Incident radiation angle	$\pm 5^{\circ}$	reference angle	± 3%					
Field size	minimum : manufacturer specification max : 35 cm x 35 cm	as at calibration	± 3%					
Air pressure	80 kPa – 106,0 kPa	101.3 kPa	± 2%					
Temperature	15 – 35 °C	20 °C	± 3%					
Operating voltage	-15% to +10%	Nominal	± 2%					
Electromagnetic compatibility	IEC 61000-4	Without EM	± 5%					

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

RECOMMENDED SPECIFICATIONS OF DETECTORS OF A REFERENCE CLASS DOSIMETER, BY APPLICATION [IAEA TRS 457]

	Type of detector	kV	I.E.	Resp	Range of air kerma rate		
Application			% 0	var %	Unattenuated beam	Attenuated beam	
General radiography	Cylindrical, spherical or plane-parallel	60 - 150	3.2	±2.6	1 mGy/s – 500 mGy/s	$10 \ \mu Gy/s - 5 \ mGy/s$	
Fluoroscopy	Cylindrical, spherical or plane-parallel (preferable)	50 - 100	3.2	±2.6	10 μGy/s – 10 mGy/s	0.1 μGy/s – 100 μGy/s	
Mammography	Plane-parallel	22-40	3.2	±2.6	10 μGy/s – 10 mGy/s		
Computed tomography ¹⁾	Cylindrical (pencil type)	100 - 150	3.2	±2.6	0.1 mGy/s – 50 mGy/s		
Dental radiography	Cylindrical or -plane- parallel	50 - 90	3.2	±2.6	1 μGy/s – 10 mGy/s		

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

TLDs

TLDs are available in various forms (e.g. powder, chips, rods, ribbons, etc.) and made of various materials. Most commonly used in medical applications are based on lithium fluoride doped with magnesium and titanium (LiF:Mg,Ti) but other materials like LiF:Mg,Cu,P, Li2B4O7:Mn, CaSO4:Dy and CaF2:Mn

Instrumentation – "Paceive" colid state decompetros (TLD_OSL) application, energy dependence or response, etc

TL material	Form	Glow peak	Emmission maximum	Z_{eff}	Relative sensitivity	Linear range	Fading	Annealing
		°C	nm			Gy		
LiF:Mg,Ti	Powder, chips, rods, discs	210	425	8.14	1	5x10 ⁻⁵ to 1	<5% per year	400°C, 1 h + 80°C, 24 h
LiF:Mg,Ti,Na	Powder, discs	220	400	8.14	0.5		NA	500°C, 0.5 h
LiF:Mg,Cu,P	Powder, discs	232	310(410)	8.14	15-30	10 ⁻⁶ to 10	<5% per year	240ºC, 10 min
Li ₂ B ₄ O ₇ :Mn	Powder	210	600	7.4	0.15-0.4	10 ⁻⁴ to 3	5% in 2 months	300°C, 15 min
Al ₂ O ₃ :C	Powder, discs	250	425	10.2	30	10 ⁻⁴ to 1	3% per year	300°C, 30 min
CaSO ₄ :Dy	Powder, discs	220	480(570)	15.3	30-40	10 ⁻⁶ to 30	7-30% in 6 months	400°C, 1 h
CaF ₂ :Dy	Powder	200(240)	480(575)	16.3	16	10 ⁻⁵ to 10	25% in 4 weeks	600°C, 2 h
BeO	Discs	180 to 220	330	7.13	0.7-3	10 ⁻⁴ to 0.5	7% in 2 months	600°C, 15 min

!!!

- annealing process
- fading
- energy response
- accuracy calibration

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Phantoms are used

- when Automatic Exposure Control (AEC) is used (to "trigger" mAs)
- to simulate scattered radiation conditions
- in CT dosimetry

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Instrumentation - Phantoms

- PMMA phantoms (eg typical 185 mm thick for std patient)
- ICRU phantoms
 - PMMA walls filled with water (eg 200 mm for std patient)
- ANSI phantoms
 - PMMA + Al

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

13'

✓ Dose measurements (clinical measurements)

Instrumentation

Procedures – Dosimetry protocols

✓ Patient dosimetry

✓ Diagnostic Reference Levels (DRL)

• Local - Regional – National

✓ Collective Dose - Effective dose

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Phantom makes sense if AEC is used

For manual settings : kV, mA, mAs

usually

exposure settings for standard patient (eg 75 kg, 170 cm height) or according to clinical data collected (kV, mAs, FFD, FSD)

Cyprus 7-2-2015

Dosimetry methodology : Radiography

Calculation of Incident air kerma, K_i

Calculation of patient entrance surface air kerma, Ke

Appropriate backscatter factor (B) for clinical beam HVL & field-size,

 $K_e = K_i B$

TABLE VIII.1. BACKSCATTER FACTORS, *B*, FOR WATER, ICRU TISSUE AND PMMA FOR 21 DIAGNOSTIC X RAY BEAM QUALITIES AND FOR THREE FIELD SIZES AT A FOCUS TO SKIN DISTANCE OF 1000 mm*

		Backscatter factor (B)									
Tube voltage	Filter	Field size 100 mm × 100 mm			200 mm × 200 mm			250 mm × 250 mm			
(kV)	The	HVL (mm Al)	Water	ICRU tissue	PMMA	Water	ICRU tissue	PMMA	Water	ICRU tissue	PMMA
50	2.5 mm Al	1.74	1.24	1.25	1.33	1.26	1.27	1.36	1.26	1.28	1.36
60	2.5 mm Al	2.08	1.28	1.28	1.36	1.31	1.32	1.41	1.31	1.32	1.42
70	2.5 mm Al	2.41	1.30	1.31	1.39	1.34	1.36	1.45	1.35	1.36	1.46
70	3.0 mm Al	2.64	1.32	1.32	1.40	1.36	1.37	1.47	1.36	1.38	1.48
70	3.0 mm Al +0.1 mm Cu	3.96	1.38	1.39	1.48	1.45	1.47	1.58	1.46	1.47	1.59
80	2.5 mm Al	2.78	1.32	1.33	1.41	1.37	1.39	1.48	1.38	1.39	1.50
80	3.0 mm Al	3.04	1.34	1.34	1.42	1.39	1.40	1.51	1.40	1.41	1.52
80	3.0 mm Al +0.1 mm Cu	4.55	1.40	1.40	1.49	1.48	1.50	1.61	1.49	1.51	1.63
90	2.5 mm Al	3.17	1.34	1.34	1.43	1.40	1.41	1.51	1.41	1.42	1.53
90	3.0 mm Al	3.45	1.35	1.36	1.44	1.42	1.43	1.53	1.42	1.44	1.55
90	3.0 mm Al +0.1 mm Cu	5.12	1.41	1.41	1.50	1.50	1.51	1.62	1.51	1.53	1.65
100	2.5 mm Al	3.24	1.34	1.34	1.42	1.40	1.41	1.51	1.41	1.42	1.53
100	3.0 mm Al	3.88	1.36	1.37	1.45	1.44	1.45	1.55	1.45	1.46	1.57

Determination of patient doses from measurements on patients with **TLDs** TLD Image Receptor X ray tube $d_{\rm FID} = 1000 \, \rm mm$

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Fluoroscopy	Phantom	Entrance surface air kerma rate	Measured directly on a phantom or calculated from the incident air kerma rate using backscatter factors.
	Patient	Air kerma–area product	Maximum skin dose is also measured.

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Dosimetry methodology : Fluoroscopy & Interventional radiology

- 4 geometries
 - Under couch
 - Over couch
 - C-arm
 - C-arm-lat

FIG. 8.4. Configuration for measurement of patient entrance surface air kerma: (a) an under couch installation, (b) an over couch installation, (c) a C-arm unit, (d) C-arm unit, lateral exposures or when a couch used clinically is not available (after Martin et al.

Annual Meeting
Entrance surface air kerma rate

$$\dot{K}_e = \dot{M} N_{K,Q_0} k_Q k_{TP}$$

CAUTION when using solid state detector!! they usually have lead (Pb) back side plate.

They measure NEITHER entrance air kerma, since backscatter is not measured (efficiently) NOR incident air kerma, Ki,

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Dosimetry methodology : Fluoroscopy & Interventional radiology

Entrance surface air kerma for different

Fluoroscopy Dosimetry on Patients : KAP meters

• KAP meter with flat trasparent ionisation chamber

KAP may be :

- mounted on tube housing
- Portable and placed on tube exit (diaphgrams)
- is calculated from kV, filtration, mAs, diaphragms positions

Air kerma-area product, P_{KA} (= K · A) is independent of distance, so KAP metew indiaction = P_{KA} on patient

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Incident air kerma Entrance surface air kerma

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Two different approches:

- Measuremets using dosimeters and phantoms (45 mm PMMA, EU)
- Measurements using TLDs

Dosimetry methodology : Mammography

2a Screen-film mammography

European guidelines for quality assurance in breast cancer screening and diagnosis Fourth edition

2b Digital mammography

ACR protocol

QUALITY IS OUR IMAGE

IAEA protocol

Dosimetry in Diagnostic Radiology: An International Code of Practice

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

57

Measurements using phantoms & Dosimeter

1. Knowledge of the parameters for correct exposure of the phantom ; determination of mAs

- 2. Measurement of incident air kerma;
- 3. Measurements of HVL;

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Dosimetry methodology : Mammography

Dosimetry methodology : Mammography

Measurements using TLDs

- Phantom on the breast table
- TLDs on the surface of the phantom (NOT on patient breast) with the centre of the sachet 40 mm from the chest wall edge and centred with respect to the lateral direction
- Compression plate down onto the phantom (taking care not to damage TLDs).
- TLD measure the K_e

HVL (mm Al)	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65
В	1.07	1.07	1.08	1.09	1.10	1.11	1.12	1.12	1.13

$$K_i = K_e / B = (M \cdot N_{KQo} \cdot k_Q \cdot k_f) / B$$

CTDI, Computed Tomography Dose Index :

- measured with single axial scan only
- Measured on axis of scanner using pencil ionisation chamber
- Calculated as integral of air kerma along chamber divided by nominal beam <u>width</u>

Dosimetry methodology : CT

- ✓ Cylindrical PMMA phantoms with holes for pencil chamber
 - 32 cm body phantom
 - 16 cm head phantom
- ✓ Measurements in air

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2

C $_{a,100}$ – CTDI measured in air, integrated over 100 mm, mGy

$$C_{a,100} = \frac{P_{KL}}{NT} = \frac{1}{NT} \overline{MN}_{P_{KL},Q_0} k_Q k_{TP}$$

- : mean value of dosimeter readings
- : correction factor for temperature and pressure
- $N_{P_{KI},Qo}$: dosimeter calibration coefficient
 - : beam quality correction factor
- NT : nominal width of irradiating beam

Normalized _nC_{a,100} , mGy/mAs

$$_{n}C_{a,100} = \frac{C_{a,100}}{P_{\text{It}}}$$

M

 k_{TP}

 k_{Q}

Dosimetry methodology : CT

Calculation of the weighted CTDI, C_w

$$C_{\text{PMMA,100},\text{c}} = \frac{1}{NT} \overline{M}_{\text{c}} N_{P_{\text{KL}},Q_0} k_Q k_{\text{TP}}$$
$$C_{\text{PMMA,100},\text{p}} = \frac{1}{NT} \overline{M}_{\text{p}} N_{P_{\text{KL}},Q_0} k_Q k_{\text{TP}}$$

$$C_{\rm W} = \frac{1}{3} \left(C_{\rm PMMA,100,c} + 2 \ C_{\rm PMMA,100,p} \right)$$
$${}_{\rm n} C_{\rm W} = \frac{C_{\rm W}}{P_{\rm It}}$$

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Dosimetry methodology : CT

- Patient dose index assessed in terms of
 - C_{vol} : CTDI volume (ref. to one "rotation") mGy
 - P_{KL,CT}: CT Air kerma Length product DLP (ref to total exam)
 mGy cm
- Derived from phantom measurements & patient scan parameters
- Derived from DICOM / Header data
- No direct measurements on patients

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

✓ Dose measurements (clinical measurements)

- Instrumentation
- Procedures Dosimetry protocols

✓ Patient dosimetry

✓ Diagnostic Reference Levels (DRL)

• Local - Regional – National

✓ Collective Dose - Effective dose

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Conversion coefficients for the assessment of organ and tissue doses In most situations in diagnostic radiology, it is not possible or practicable to measure organ doses directly.

A **conversion coefficient**, *c*, relates the dose to an organ or tissue to a readily measured or calculated dosimetric quantity, thus

$$c = \frac{\text{organ or tissuedose}}{\text{measured or calculated quantity}}$$

Suffices are added to *c* to indicate the two quantities that are related, for example the coefficient

$$c_{D_{\mathrm{T}},K_{\mathrm{i}}} = D_{\mathrm{T}}/K_{\mathrm{i}}$$

relates the organ dose, D_{T} , to the incident air kerma, K_{i}

Tables of such conversion coefficients are generally produced using Monte Carlo based computer models

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015 costas.hourdakis@eeae.gr

Two approaches for the simulation of the human body

1st approach : *Mathematical phantom (geometrical phantom)*

Body & organs are constructed as combinations of various geometrical solids.

First phantom was based on ICRP Reference Man.

Cristy phantoms : represent children (1,5,10, 15y)

ADAM and EVA phantoms : GSF male and female phantoms

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

2nd approach : Voxel phantoms based on the anatomy of individuals

Name	Gender	Age	Туре	Mass	Height	Voxel size	No of organs
				kg	mm	mm ³	
Baby	Female	8 weeks	Whole body	4.2	570	2.9	56
Child	Female	7 years	Whole body	21.7	1150	19.0	61
Donna	Female	40 years	Whole body, with standardized GI tract	79	1700	35.2	62
Helga	Female	26 years	From mid thigh upwards	81 (76.8)	1700 (1140)	9.6	62
Frank	Male	48 years	Torso and head	(65.4)	(965)	2.8	60
Golem	Male	38 years	Whole body	68.9	1760	34.6	121
Otoko	Male		Whole body	65	1700	9.6	122
Standardised GI tract	Female		GI Tract			2.0	14
Visible Human	Male	38 years	From knees upwards	(87.8) 103.2	(1250) 1800	4.3	131

*All phantoms are based on **real persons**. Where the mass or height are given in brackets, this denotes the values for the phantom, otherwise the values are for the individual.

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Organ dose conversion coefficients per incident air kerma, for chest PA examination; tube voltage: 141 kV; total filtration: 5.7 mm Al

Organ	Organ dose per unit incident air kerma (mGy/(mGy)						
	Voxel Golem	Voxel visible human	Mathematical Adam				
Colon	0.09	0.04	0.008				
Testes	_	_	_				
Liver	0.38	0.30	0.27				
Lungs	0.57	0.51	0.79				
Pancreas	0.27	0.19	0.32				
Red bone marrow	0.26	0.21	0.21				
Skeleton	0.40	0.33	0.39				
Spleen	0.77	0.52	0.39				
Small intestine	0.09	0.04	0.01				
Stomach wall	0.30	0.24	0.14				
Thyroid	0.28	0.18	0.14				
Surface (entrance)	1.27	1.40	1.39				
Surface (exit)	0.10	0.07	0.09				

PETOUSSI-HENSS, N., ZANKL, M., FILL, U., REGULLA, D., The GSF family of voxel phantoms, Phys. Med. Biol. **47** (2002) 89-106.

$$D_T = K_e \cdot c_{D_T, K_e}$$

 K_e : measured with TLDs on patients, or calculated from K_i : $K_e = K_i \cdot B$

$$C_{D_{\mathrm{T}},K_{e}}$$

Conversion coefficients, entrance air kerma K_e to organ doses

Example : Chest PA X-ray examination (total filtration of 3 mm Al) : Organ dose conversion coefficients for lung, liver, breast, thyroid and ovaries. n, X ray spectra have.

Data from HART, D., JONES, D.G., WALL, B.F., Normalised Organ Doses for Medical X-Ray Examinations Calculated Using Monte Carlo Techniques, National Radiological Protection Board Rep. NRPB-SR262, Chilton (1994)

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

W. Huda and N. A. Gkanatsios, Dose and energy in diagnostic radiology, Medical Physics, Vol. 24, No. 8, August 1997

EEAE

PCXMC software, STUK

💭 DefForm []			
File			
<u>Main menu</u> <u>New Form</u>	🔁 Open Form 🛛 🔓 Save I	form Save Form As	Erint As Text
Header text			
Phantom data			
Age:	Phantom height	Phantom mass	2.0
0001050100	15 (Adu 178.60	73.20 Arms in phantom	
	5tanuaru: 176.6	Stanuard: 73.2	
Geometry data for the x-ray beam		✓ Draw x-ray held	
FSD Beam width Beam heig 80.00 20.00 20.00	ht Xref Yref Zre	ef	
Projection angle	Cranio-caudal angle	Update Field	
270.00	0.00		
LATE AP=27 LATE PA=90	0 (pos) Cranial X-ray tube (neg) Caudal X-ray tube	Stop	
MonteCarlo simulation parameters			Rotation increment + 30 - View angle 270
Max energy (keV) Number	of photons		
150 20000			
Field size esteulator		Pancreas	
FID Image width Image t	eight B	rain 🗸 Uterus	
110 18 24	Calculate	estes V Liver Upper large inte	restine
Phantom avit, image distance: 5	.0	pleen Lower large inte ungs V Small intestine	estine
Financom exit- milage distance.	Y	varies V Thyroid	
FSD Beam width Beam h	Use this data	hymus Gall bladder	
		tomach Vesophagus aliwaru alande Vesophagus	
🚱 🧮 😂 💁 I	🗠 🖻 😓 🜍 I	🔤 🕅	
		., .,	

<u>Main menu</u> <u>Char</u>	nge X-ray Spectru	m <u>O</u> pen M	C data for dose calculation	📇 Print	层 Save
X-ray tube potential: 8 Anode angle: 2	D kV Filtra D deg	ition: 3.5 mm A	м		
File: C:\Program Files (x86)\F IAEA_CRO_Brazilian_c1 F Projection angle (LATL=0,PA Field width: 28.91 cm an Phantom height: 170.000 c Incident air kerma: 200.01	PCXMC\MCRUNS\/A Phantom: Adult , Arm: =90,LATR=180,AP= d height: 12,60 cm m and mass: 68,00 00 mGy Tube volta	AEA_CRP_Act2\ sincluded. •270): 270.000 FSD: 85.24 00 kg Scaling f age: 80 kV Fil	Lumbard_AP_v1.en2 Simulation: Photons/Energy level: 2(Obl. angle: 0.000 0 cm Ref.point (x,y,z(cm)): (0.000 actors sx(=sy): 0.988 and sz: 0. ter3.5 mm Al	0000 Maximum), 0.000, 10.000 952	i energy: 1 D)
Organs	Dose (mGv)	Error (%)	Organs	Dose (mGv)	Error (%)
Active hone marrow	6,457087	1.1	(Scapulae)	0.001263	100.0
Adrenals	0.141456	42.7	(Clavicles)	0.000000	NA
Brain	0.000000	NA	(Ribs)	0.062734	14.0
Breasts	0.112915	30.9	(Upper arm bones)	0.000943	99.5
Colon (Large intestine)	26.814122	1.6	(Middle arm bones)	0.113991	23.9
(Upper large intestine)	17.503539	2.5	(Lower arm bones)	9.573411	3.2
[Lower large intestine]	39.130021	2.0	(Pelvis)	56,903936	1.0
Extrathoracic airways	0.000000	NA	(Upper leg bones)	5.887402	2.6
Gall bladder	1.201766	12.2	(Middle leg bones)	0.148913	8.6
Heart	0.028423	53.6	(Lower leg bones)	0.002644	71.6
Kidneys	0.527950	12.5	Skin	8.774728	0.8
Liver	0.359446	7.1	Small intestine	15.645171	1.3
Lungs	0.019804	27.0	Spleen	0.264436	25.3
	4.706394	1.1	Stomach	0.659737	14.0
Lymph nodes		0.1	TasKalas	7.045313	8.6
Lymph nodes Muscle	12.745236	0.1	l esticles	1.040010	
Lymph nodes Muscle Desophagus	12.745236	56.1	Thymus	0.026100	100.0
Lymph nodes Muscle Desophagus Oral mucosa	12.745236 0.033280 0.000000	56.1 NA	Thymus Thyroid	0.026100	100.0 NA
Lymph nodes Muscle Desophagus Oral mucosa Ovaries	12.745236 0.033280 0.000000 52.253152	0.1 56.1 NA 8.7	Thymus Thyroid Urinary bladder	0.026100 0.000000 124.985090	100.0 NA 1.8
Lymph nodes Muscle Desophagus Oral mucosa Ovaries Pancreas	12.745236 0.033280 0.000000 52.253152 0.243139	0.1 56.1 NA 8.7 19.1	Thymus Thyroid Urinary bladder Uterus	0.026100 0.000000 124.985090 69.316783	100.0 NA 1.8 3.2
Lymph nodes Muscle Desophagus Oral mucosa Ovaries Pancreas Prostate	12.745236 0.033280 0.000000 52.253152 0.243139 45.331409	0.1 56.1 NA 8.7 19.1 5.9	Testicles Thymus Thyroid Urinary bladder Uterus	0.026100 0.000000 124.985090 69.316783	100.0 NA 1.8 3.2
Lymph nodes Muscle Desophagus Oral mucosa Ovaries Pancreas Prostate Salivary glands	12.745236 0.033280 0.000000 52.253152 0.243139 45.331409 0.000000	0.1 56.1 NA 8.7 19.1 5.9 NA	Testicles Thymus Thyroid Utinary bladder Uterus Average dose in total body	0.026100 0.000000 124.985090 69.316783 10.887088	100.0 NA 1.8 3.2 0.1
Lymph nodes Muscle Desophagus Oral mucosa Ovaries Pancreas Prostate Salivary glands Skeleton	12.745236 0.033280 0.000000 52.253152 0.243139 45.331409 0.000000 5.961705	0.1 56.1 NA 8.7 19.1 5.9 NA 0.9	Thymus Thyroid Utinary bladder Uterus Average dose in total body Effective dose ICRP60 (mSv)	0.026100 0.000000 124.985090 69.316783 10.887088 17.046927	100.0 NA 1.8 3.2 0.1 2.8
Lymph nodes Muscle Desophagus Oral mucosa Ovaries Pancreas Prostate Salivary glands Skeleton (Skull)	12.745236 0.033280 0.000000 52.253152 0.243139 45.331409 0.000000 5.961705 0.000000	0.1 56.1 NA 8.7 19.1 5.9 NA 0.9 NA	Thymus Thyroid Utinary bladder Uterus Average dose in total body Effective dose ICRP60 (mSv) Effective dose ICRP103 (mSv)	0.026100 0.000000 124.985090 69.316783 10.887088 17.046927 12.479171	100.0 NA 1.8 3.2 0.1 2.8 1.7
Lymph nodes Muscle Desophagus Oral mucosa Ovaries Pancreas Prostate Salivary glands Skeleton (Skull) (Upper Spine)	12.745236 0.033280 0.000000 52.253152 0.243139 45.331409 0.000000 5.961705 0.000000 0.000000	0.1 56.1 NA 8.7 19.1 5.9 NA 0.9 NA NA	Testicles Thymus Thyroid Utinary bladder Uterus Average dose in total body Effective dose ICRP60 (mSv) Effective dose ICRP103 (mSv)	0.026100 0.000000 124.985090 69.316783 10.887088 17.046927 12.479171	100.0 NA 1.8 3.2 0.1 2.8 1.7
Lymph nodes Muscle Desophagus Dral mucosa Dvaries Pancreas Prostate Salivary glands Skeleton (Skull) (Upper Spine) (Middle Spine)	12.745236 0.033280 0.000000 52.253152 0.243139 45.331409 0.000000 5.961705 0.000000 0.000000 0.000000 0.047884	0.1 56.1 NA 8.7 19.1 5.9 NA 0.9 NA NA 22.8	Testicles Thymus Thyroid Utinary bladder Uterus Average dose in total body Effective dose ICRP60 (mSv) Effective dose ICRP103 (mSv)	0.026100 0.000000 124.985090 69.316783 10.887088 17.046927 12.479171	100.0 NA 1.8 3.2 0.1 2.8 1.7

۷

Ps

🔽 🗖

BEEAE

Anı 🔗

6

0

 \sim

kis@eeae.gr

Incident air kerma Entrance surface air kerma

Mean glandular dose, D_G , is the risk related quantity therefore is the primary quantity of interest

Annual Meeting or CIVIPA, NICosia, Cyprus 7-z-2015 costas.hourdakis@eeae.gr

Dosimetry methodology : Mammography

Calculation of mean glandular dose to a 50 mm standard breast of 50% glandularity (IAEA protocol)

HVL (mm Al)	^с _{DG30,Кі,рыма} (mGy/mGy)		
0.25	0.149	Target/filter	s factor
0.30	0.177	combination	
0.35	0.202	Mo/Mo	1.000
0.40	0.223	Mo/Rh	1.017
).45	0.248	Rh/Rh	1.061
0.50	0.276	Rh/Al	1.044
1.55	0.304	W/Rh	1.042
).60	0.326	* Data taken from l	Dance et al. [8.20
0.65	0.349	Value of s-Fact	tor for diffe

* Data taken from Ref. [8.2].

Conversion coefficient c_{DG50, Ki,PMMA} used to calculate the mean glandular dose to a 50 mm standard breast of 50% glandularity from the incident air kerma for 45 mm PMMA phantom

costas.hourdakis@eeae.gr

target

filter

mammographic

combinations

Dosimetry methodology : Mammography

		$D_{G} = D_{G 50} \cdot C_{DG, DG 50}$						
HVL	Breast Thick.		Brea	ist glanduli	arity			
mm Al	mm	0.1%	25%	50%	75%	100%		
0.30	20	1.130	1.059	1.000	0.938	0.885		
	30	1.206	1.098	1.000	0.915	0.836		
	40	1.253	1.120	1.000	0.898	0.808		
	50	1.282	1.127	1.000	0.886	0.794		
	60	1.303	1.135	1.000	0.882	0.785		
	70	1.317	1.142	1.000	0.881	0.784		
	80	1.325	1.143	1.000	0.879	0.780		
	90	1.328	1.145	1.000	0.879	0.780		
	100	1.329	1.147	1.000	0.880	0.780		
	110	1.328	1.143	1.000	0.879	0.779		

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Variation along the length of the patient of organ dose conversion coefficients per 5 mm CT slice for ovaries, lung and thyroid for a particular CT scanner.

[JONES, D.G., SHRIMPTON, P.C., Survey of CT Practice in the UK. Part 3: Normalised Organ Doses Calculated Using Monte Carlo Techniques, National Radiological Protection Board Rep. NRPB-R250, Chilton (1991)]

Annual Meeting of CIMPA, Micosia, Cyprus 7-2-2013

LOSLAS.IIUUIUAKIS@EEAE.gi

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Examination Coliche		Philips Model	· Tor	Mode: Slice	escanning	
Monte Carlo Dose Data	a derived from:	Philips Tomos	i. IOΓ scan ΔV	1990 Illiana 1990		
Monte Carlo Dose Data	a denved nom.	Fillips Tomos	Scall AV			88 80
Scan plans:						
Comment: COLICHE	3 IN 5					
kV :120	mAs: 250.00	Slices:60	CTDI (n	nGv/mAs): 0.1678	}	60
Slice Width (mm):3.0 T	Table feed per s	lice(mm): 5.0	nCTDIw (Head) (uGv/mAs): 127.7	+/- 1.9 %	A DECEMBER OF A
Scan Start (cm): 35,0	Scan	End (cm): 5,2	nCTDIw (Body) (i	uGy/mAs): 67,1	+/- 1,9 %	
			· · · · · · · · · · · · · · · · · · ·			40 40
Prime Organs	Equivalent Do	se Error	Other Organs	Equivalent Do	<u>se</u> <u>Error</u>	
Lungs	0,28 mGy	3%	Pelvis	26 mGy	2%	30 30 30
Stomach Wall	6,8 mGy	2%	Spine	6,2 mGy	× 2%	20 20
Urinary Bladder Wall	(11 mGy)	2%	Skull Cranium	0 mGy	<u>\</u> 0%	
Breasts	0,10 mGy	6%	Skull Facial	1,9 µGy	50%	10
Liver	4,8 mGy	2%	Rib Cage	1,5 mGy	2%	
Esophagus	0,14 mGy	10%	Clavicles	23 µGy	40%	
Thyroid	2,6 µGy	10%	Eye Lenses 💦 📐	0 mGy	0%	-10
Skin	2,7 mGy	1%	Gall Bladder Wall	10 mGy	2%	
Bone Surface	4,5 mGy	2%	Heart	0,30 mGy	5%	-20
Red bone marrow	4,0 mGy	2%			\sim	
Testes (Gonads)	0,95 mGy	4%			N 1997	-30
Ovaries (Gonads)	11 mGy	2%		No.		
LLI Wall (Colon)	8,9 mGy	2%				
		_		N	_	-50
Remainder Organs	Equivalent Do	se Error	Marrow Doses	Equivalent Do	<u>se</u> <u>Error</u>	
Muscle	3,7 mGy	1%	Pelvis	9,6 mGy	2%	
Adrenals	1,5 mGy	7%	Spine	2,3 mGy	. 2%	-70
Brain	0 mGy	0%	Skull Cranium+Facial	0,17 µGy	50%	1 1243
Small Intestine	12 mGy	2%	Rib cage	0,48 mGy	2%	
	12 mGy	2%	Clavicles	6,5 µGy	40%	
Kidneys	11 mGy	2%	Scapulae	33 µGy	10%	
Pancreas	3,4 mGy	3%	Upper Part of Legs	0,36 mGy	2%	C = 17 mCy (header)
Spleen	4,6 mGy	2%	Upper Part of Arms	21 µGy	10%	$ \langle \rangle = 1 / \text{IIGy}(\text{body})$
Ihymus	92 µGy	30%				
Uterus	(11 mGy	2%				
			DLP (head phantom)	0,57 Gy cm	+/- 2%	$ C_{vol} = 10 \text{ mGy} (body)$
Effective Dose (ICRP 60)) 4,9 mSv	+/- 2%	DLP (body phantom)	0,30 Gy cm	+/- 2%	

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

✓ Dose measurements (clinical measurements)

- Instrumentation
- Procedures Dosimetry protocols

✓ Patient dosimetry

✓ Diagnostic Reference Levels (DRL)

• Local - Regional – National

✓ Collective Dose - Effective dose

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

WHY DO WE NEED DRL :

Image quality – diagnostic information and DOSE

Lack of optimization & justification usually leads to inappropriate patient dosed

- Inappropriate technique factors, e.g. too low kVp in chest ٠
- Images routinely shot too dark ٠
- Inappropriate film chemistry (e.g., to little regeneration) •
- Not properly adjustment of digital system components •
- images produced can even be of low diagnostic quality ٠

Higher dose may result in better quality images, when justified and optimized

Better spatial resolution, better S/N, better low contrast detectability

... somehow as rules of equality between patients

What are DRLs

- a basis for the review of dose values applied
- dose values not exceeded on regular base, provided good radiographic practice is applied
 - for standard patients
 - undergoing standard diagnostic and interventional procedures
- DRLs serve as a means to identify situations where patient doses are unusually high

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

What are DRLs NOT

- DRLs are no limiting (maximum) values or dose limits
- ♦ Are NOT Static → DRLs require continuous updating
- Do not applied to non standard patients
- DRLs do not provide a guidance on the reason or a remedy in case they are exceeded. Instead: exceeding of DRLs triggers investigation
- They do NOT stand alone : They are connected to
 - image quality is appropriate
 - the examination is performed at an optimized dose level
 - should be determined at national regional local level

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

DRL

- ✓ Should defined for each examination technique (or the most common)
- Dosimetry indicators :
 - Incident air kerma or entrance surface air kerma (general radiography)
 - Incident air kerma for mammography
 - P_{KA} for fluoroscopy
 - C_W(CTDI_w), C_{VOL}(CTDI_{vol}), P_{KL,CT}(DLP), or DLP for CT
- ✓ Different DRL for different technologies (?) (DR, CR, conventional films)
- ✓ Sufficient number of patients : 10 (preferably 20) per x-ray system, per clinic, per examination / technique
- ✓ Standard size patient (weight, height)
- ✓ Data should be representative for all clinics, country areas, etc
Radiography

Calculated incident air kerma and entrance surface air kerma

Tube focus to table top distance (d_{FTD}) :				mm]	Distance, d, of	mm		
Patient	Weight	Tube voltage	Tube loading	Patient thickness (t_p)	Field size	Backscatter factor (B)	Tube output, Y(d), at distance d^{a}	Incident air kerma $(K_i)^b$	Entrance surface air kerma $(K_e)^c$
	(kg)	(kV)	(mA·s)	(mm)	$(mm \times mm)$		$(mGy/(mA\cdot s))$	(mGy)	(mGy)

Fluoroscopy

EEAE

4. Dosimeter reading and calculation of entrance surface air kerma rate

Selected option	Tube voltage (kV)	Tube current (mA)	Filtration (mm Al)	Manual or automatic mode setting ^a	Field size (mm × mm)	Dosimeter readings (M ₁ , M ₂ , M ₃) (mGy/min)	Mean dosimeter reading (<i>M</i>) (mGy/min)	k _Q	Entrance surface air kerma rate (K _e) ^b (mGy/min)
A PA									

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

costas.hourdakis@eeae.gr

K_e Phantom:

Fluoro 2

Mammography

2 Collected data and calculation of mean glandular dose

L/R breast	Projection	Target/ filter	Tube voltage (kV)	Tube loading (P _{liput}) (mA·s)	Breast thickness (mm)	Distance (d _P) (mm)	Tube output at reference point (Y _{ref}) ^a (mGy·mA ⁻¹ ·s ⁻¹)	Incident air kerma (K _i) ^b (mGy)	HVL ^e (mm Al)	s-factor	Conversion coefficient (c _{DGS0,K1}) ^d (mGy/mGy)	Conversion coefficient $(c_{DGgDGS0})^d$ (mGy/mGy)	Mean glandular dose (D _G) ^e (mGy)

СТ

4. CT air kerma indices C_{PMMA,100,c}, C_{PPMMA,100,p} and C_w for the standard phantom

Head/body:

Phantom: CT 3

Scanner settings (tube voltage, beam filter, head/body mode, etc.)	Nominal slice thickness (T) (mm)	Number of slices (N)	Tube loading (P _b) (mA·s)	Position	Dosimeter readings (M_1, M_2, M_3)	Mean \overline{M}_c or \overline{M}_p	Calculated value of C _{PMMA,100,e} (mGy)	Calculated value of CPMMA,100g (mGy)	Calculated value of C _w (mGy)	Calculated value of _n C _w (mGy·mA ⁻¹ ·s ⁻¹)
				С						
				P1						
				P2						
				P3						
				P4						
				С						
				P1						

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Example from Greece, 1999

Pediatric DRLs

- DRLs need to be defined for different groups
 - **By size** (height, weight): better correlation, but hard to apply
 - By age: easier to use in clinical practise, and therefore recommended
 - Age bands: variation of dose within clinics is larger than between smaller and older children → children grouped into age bands, average doses are then compared to dose reference corresponding to upper limit of the age band (e.g., 5 to 10 year olds to guidance level corresponding to a typical 10 year old, etc.)
- Typically age bands: newborns (<1m), 1m-1y, 1 to 5, 5 to 10, 10 to 15

Pediatric DRLs

Paediatrics

Usually, grouping based on age :

0 -1m, 1m - 1y, 1y - 5y, 5y - 10y, 10y - 15y

More appropriate based on body mass index (i.e. weight – height)

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

For comparisons in the hospital ...

- Selected sample that best represents the population studied
- Modality

For regional or country comparisons

- Selected sample that best represents the population studied.
- Modality
- Geographical
- Heath care level

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Greek paradigm for reducing the uncertainties on data collection

Grouping the clinics / hospital according to their

✓Infrastructure

- X1 : labs operate R/G, Mammo, Dental
- X2 : labs : X1 + CT
- X3 : labs : X2 + interventional or complex or large number (>15) of X-ray units

✓ Health care level

- •Pr Lab : private operate outside clinic (X1 or X2)
- Pr Clin : private clinic (X3 or X2)
- Pub Hosp : Public large hospitals (X3 or X2)
- Pub HC : Public health care centers operating at regional level (X1)
- Pub Ins : Public Insurance centers (X1 or X2)

\checkmark Geographical location

- Athens (capital) region
- Large cities
- Countryside

Data collection from 30% of each group – combination (45)

- Patient data (20 patients for each examination-procedure)
- Dosimetry

DRL

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ

ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ Αρ

Αρ. Φύλλου 3176 26 Νοεμβρίου 2014

37161

Ακτινογραφικές εξετάσεις	ESAK (mGy)
Κεφαλής ΟΠ/ΠΟ	3,7
Κεφαλής Πλάγια	2,8
Θώρακος ΟΠ	0,35
Θώρακος Πλάγια	1,35
Αυχενικής Μοίρας Σπονδυλικής Στήλης	1,75
Οσφυϊκής Μοίρας Σπονδυλικής Στήλης (ΠΟ)	7,0
Οσφυϊκής Μοίρας Σπονδυλικής Στήλης (Πλάγια)	16,0
Λεκάνης-Ισχύων	6,0
NOK	6,5

Εξετάσεις Αξονικής Τομογραφίας	CTDIvol (mGy)	DLP		
Κεφαλής	67	1055		
Σπλαχνικό κρανίο	52	605		
Έσω ους	63	355		
Θώρακος	14	480		
Άνω/κάτω κοιλίας	16	760		
Θώρακος και Άνω/κάτω κοιλίας	17	1020		
Οσφυϊκής Μοίρας Σπονδυλικής	35	725		

Επεμβατική Καρδιολογία	Συνολικός χρόνος ακτινοσκόπησης (min)	Συνολικό γινόμενο Kerma- επιφάνειας - KAP (Gycmz)			
Στεφανιογραφία	6	55			
Αγγειοπλαστική στεφανιαίας αρτηρίας ⁽¹⁾	18	130			
Τοποθέτηση βηματοδότη	7	35			
Κατάλυση με ραδιοσυχνότητες (RF ablation)	40	145			
Ακτινοσκοπικός ρυθμός δόσης εισό- δου σε ομομοίωμα ⁽²⁾	29 mGy/min (για οπτικό πεδίο ενισχυτή εικόνας (FOV), 20-25cm)				
Δόση εισόδου ανά λήψη - frame (CINE) σε ομοίωμα ⁽²⁾	0,23 mGy/fr (20-25cm FoV)				

	Οδοντιατρικές ακτινο- γραφικές εξετάσεις	Ki (mGy)					
		Απεικόνιση με φιλμ	Ψηφιακή απεικόνιση				
Ī	Άνω Γομφίοι	3,70	1,20				
I	Κάτω τομείς	2,35	0,65				

EEAE

Annual Meeting of CMPA, Nicosia, Cyp

Uncertainty due to exposure settings of patients (mAs) @ same unit

Mean	21.47	mAs
SD	3.82	mAs
S	0.70	mAs
u %	3.25%	

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

DRL

Dose to an average patient – Comparisons : Uncertainties

Peter Hamolka, Vienna Hosp, 2009

Scatter of data / number of patients

combined uncertainty: 10% (k=1)

BEEAE

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

DRL

Distributions of patient data (paradigm from Greek hospitals)

Distributions of patient data in Greek hospitals

Annual Meeting of CMPA, Nicos

Distributions of patient data (paradigm from Greek hospitals)

Mean DAP values per hospital for Percutaneous Coronary Intervention

Distributions of patient data in Greek hospitals

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Distributions of patient data (paradigm from Greek hospitals)

Pediatric DRLs

DLP

1m - 1y:	42.7 ± 2.4 mGy cm
1y - 5y:	58.2 ± 4.1 mGy cm
5y - 10y:	102.8 ± 3.7 mGy cm
10y - 15y:	135.6 ± 9.5 mGy cm

u= 5 - 10 % (k=1)

s 7-2-2015

Distributions of patient data (paradigm from Greek hospitals)

Table 4. Summary of CTDIvol and DLP results for the selected examinations.

Exam	CTDI _{vol} (mGy)								DLP (mGy cm)					
	Mean	Min	Max	First quartile	Median	SD	Third quartile	Mean	Min	Max	First quartile	Median	SD	Third quartile
Head	60.7	21.7	172.6	49.9	59.4	19.7	66.7	909	301	2972	729	854	326	1053
Sinuses	38.9	10.6	100.0	22.9	37.2	20.0	52.1	473	86	1160	269	440	257	607
Inner ear	59.4	17.3	291.0	35.8	53.3	45.1	63.5	372	95	1601	226	301	295	359
Chest	12.1	4.5	40.5	8.1	11.1	5.5	14.4	395	158	1297	272	375	178	481
Chest-abdomen-pelvis	13.8	5.6	26.2	10.8	13.4	5.2	16.8	834	335	1714	593	802	333	1022
Abdomen-pelvis	13.9	5.0	38.6	10.6	12.9	6.0	16.3	628	230	1735	468	589	263	758
Lumbar spine	28.2	9.3	80.2	18.5	22.7	14.1	35.2	646	144	1871	444	552	331	723

Routine He	ad
#1992 patie	ents
u = 0.7% (k	=1)

u combined = 4.7% (k=1)

Figure 3. Mean CTDI_{vol} values by scanner group according to the number of simultaneously acquired slices.

Simantirakis G et al. Radiation Prot. Dosimetry (2-June-2014), pp 1-6

✓ Dose measurements (clinical measurements)

- Instrumentation
- Procedures Dosimetry protocols

✓ Patient dosimetry

- ✓ Diagnostic Reference Levels (DRL)
 - Local Regional National

✓ Collective Dose - Effective dose

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Collective dose, S

EKA01/ANA002 Αριθμός εξετάσεων σε ΑΚΤΙΝΟΛΟΓΙΚΑ ΕΡΓΑΣΤΗΡΙΑ

Επωνυμία Εργαστηρίου

Έτος:					
	Περιοχή	Εξέταση	Αριθμός λήψεων	Αριθμός εξετάσεων	
	Κρανίο	Κρανίο F ή P, Ρινικό οστό, Ιγμορείων			
	Θώρακας	Θώρακος F ή P , Τηλεκαρδίας			
-	Κοιλία - Λεκάνη	Κοιλίας (όρθια ή ύπτια θέση), ΝΟΚ			
HZH		Λεκάνης – Ισχίων Γή Ρ			
ΨΦ	Σπονδυλική Στήλη	ΑΜΣΣ ΓήΡ			
Ê		ΟΜΣΣ ΕήΡ			
NL	Άκοα	Άνω Άκρα ΕήΡ1			
- NA		Κάτω Άκρα F ή P 2			
	Λοιπές				
	ακτινογρα-				
	φιες				
MA	TOTOLAN	Μαστογραφία			
MA		Τομοσύνθεση			
		Πανοραμική			
040	ΝΤΙΑΤΡΙΚΕΣ	Κεφαλομετρική			
		Τομογραφικό CBCT			
			Αριθμός εξετάσεων		
		Πυελογραφία			
		Βαριούχος υποκλυσμός			
	AKTINO-	Βαριούχο γεύμα			
Σ	КОΠΗΣΗ	Σαλπιγγογραφία			
		Κυστεογραφία			
		Μέτρηση οστικής πυκνότητας			

EKA01/ANA002 Αριθμός εξετάσεων σε ΕΡΓΑΣΤΗΡΙΑ ΑΞΟΝΙΚΗΣ ΤΟΜΟΓΡΑΦΙΑΣ

Επωνυμία Εργαστηρίου

Έτος:					
	Περιοχή	Εξέταση	Αριθμός εξετάσεων	Αριθμός ασθενών	
A EONIGH TOMOIPA ΦΙΑ	Κεφάλι	CT εγκεφάλου CT γμορείων-κόλπων προσώπου CT ακουστ. πόρων/λιθοειδών CT οστών προσώπου/CT γνάθων (οδοντιατρική) CT αιμάτωσης εγκειράλου (CT perfusion)			
	Αυχένας	CT τράχηλου CT ΑΜΣΣ			
	Κορμός	CT θώρακος & άνω κοιλίας CT θώρακος & άνω/κάτω κοιλίας			
	Θώρακας	CT θώρακος CT ΘΜΣΣ			
	Κοιλία	CT (πλήρους) κοιλίας CT άνω κοιλίας CT κάτω κοιλίας CT ΟΜΣΕ CT οστών λεκάτης-ισχίων CT (virtual) κολονοσκότηση			
	Άκρα	CT άνω ή κάτω άκρων			
	Λοιπές				
АΞОΝІКН АГГЕІОГРАФІА		CT αγγειογραφία εγκεφάλου CT αγγειογραφία καρωτίδων CT αγγειογραφία πνευμονικών αρτηριών CT στιεφανισγραφία CT αγγειογραφία κουλιακής αορτής CT αγγειογραφία κουλιακής αορτής CT αγγειογραφία γεφρών CT αγγειογραφία γεφρών			
		υ αγγειογραφια ανώ η κάτω άκρων			

EKA01/ANA003 Αριθμός εξετάσεων σε ΕΡΓΑΣΤΗΡΙΑ ΕΠΕΜΒΑΤΙΚΗΣ ΑΚΤΙΝΟΛΟΓΙΑΣ

Επωνυμία Εργαστηρίου

	Εξέταση	Αριθμός	Αριθμός
	(Απλή) στεφανιονοαφία (CA)	eçe tu bewv	AUUCYW
NIKH	Στεφανιογραφία/Στεφανιοπλαστική (CA/PTCA/Stenting)		
LN NO	Εμφύτευση βηματοδότη		
EMB PAIR	Εμφύτευση απινιδωτή		
EX	RF ablation		
	Παιδιατρικές		
ΛΟΙΠΕΣ			
ΚΑΡΔΙΟ-			
ΛΟΓΙΚΕΣ			
	DSA εγκεφάλου (διαγνωστική)		
	Εμβολισμοί εγκεφάλου		
	DSA καρωτίδων (διαγνωστική)		
	DSA/PTA καρωτίδων		
VI	λολαγγειογραφιες/ Παροχετευσεις χοληφόρων/ Τοποθέτηση Stent (PTC- Percutaneous Transhepatic Cholangiography)		
OVO	Portosystemic Shunt)		
Ê	ERCP		
A	Χημειοεμβολισμοί ήπατος		
Ð	DSA νεφρικών αρτηριών (διαγνωστική)		
IW	DSA/PTA νεφρικών αρτηριών		
EM3	Νεφροστομίες		
	DSA κάτω άκρων και κοιλιακής αορτής (διαγνωστική)		
	DSA/PTA κάτω άκρων και κοιλιακής αορτής		
	Stent Graft (σε ανευρύσματα κοιλιακής αορτής)		
	Σπονδυλοπλαστικές		
	Λοιπές ορθοπεδικές		
	Παιδιατρυάς		
AOIDEE			
NOTITEL			

Η συμπλήρωση του πεδίου «Αριθμός ασθενών» είναι προαιρετική

Σημε

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

E is related to the 'stochastic' effects of radiation (cancer, leukaemia, hereditary)

It is normal to assume that the probability of a stochastic effect for a given organ or tissue is proportional to the organ dose D_{T} .

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015 costas.hourdakis@eeae.gr

E is an *occupational dose quantity* based on an age profile for radiation workers

One advantage is that the effective dose

- attempts to measure the risk to the patient,
- may be compared to that of any other radiological procedure as well as natural background exposure

HOWEVER

its application for patient exposures poses to limitations

- UNSCEAR and ICRP strongly emphasises that E should not be used directly to estimate detriment from medical exposure.
- E may be used for <u>comparative purposes</u>

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Problems and limitations

- Measurements or calculations make use of a standard phantom and Monte Carlo simulations
- Partial organ or body irradiation
- Different sized patients, ages, sex
- Many factors (kV, field size, position, mAs, etc) affect energy imparted to the patient and therefore E is weakly correlated
- E requires knowledge of organ doses (i.e. not accurate)
- The weighting factors, w_T are assumed to be the same for radiation workers and for the whole population, age and sex.

Collective dose, S

Fig. 5.6. Overall collective effective dose per 1000 population for different countries. The relative contributions of the four main groups (plain radiography, fluoroscopy, computed tomography and interventional radiology) are also shown.

DDM2, report

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015 costas.hourdakis@eeae.gr

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

Radiology: An International Code of Practice

TABLE 8.13. FACTORS CONTRIBUTING TO THE MEASUREMENT UNCERTAINTY IN THE DETERMINATION OF THE CT AIR KERMA INDICES, $C_{a,100}$ AND C_{W} , USING THE IONIZATION CHAMBER/ ELECTROMETER SYSTEM

Second Second Second	Uncertainty $(k = 1)(\%)$		
Source of uncertainty	Scenario 1	Scenario 2	Scenario 3
Measurement scenario (see Table 8.2)	6.3	3.5	2.7
Precision of reading	1.0 ^a	0.6 ^b	0.6 ^b
Precision of tube loading indication	1.0	1.0	1.0
Precision of chamber/phantom positioning in the centre of the gantry	0.3	0.3	0.3
Uncertainty of 1 mm in phantom diameter and 0.5 mm in depth of measurement bores ^c	0.35	0.35	0.35
Uncertainty in chamber response for in phantom measurements	3.0	3.0	3.0
Relative combined standard uncertainty ($k = 1$) for $C_{a,100}$	6.5	3.7	3.0
Relative expanded uncertainty $(k = 2)$ for $C_{a,100}$	13.0	7.4	6.0
Relative combined standard uncertainty $(k = 1)$ for C_W	7.2	4.8	4.2
Relative expanded uncertainty $(k = 2)$ for C_W	14.4	9.6	8.4

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015

 Radiation safety and patient dose optimization will always be challenging

- Patient dose should be correlated to image quality
- Advanced dosimetry methods are needed for "new technology" modalities
- DRL is an optimization tool and can serve as a useful performance indicator for patient radiation safety, as well
- High professional skills and effective co-operation between hospital staff, including management, is necessary
- Uncertainties should be taken into account, especially when comparisons are performed.

thank you for your attention

EAE

Annual Meeting of CMPA, Nicosia, Cyprus 7-2-2015 costas.hourdakis@eeae.gr